이제 생선에서 벗어나 패션 아이템이라는 새로운 데이터 셋을 사용하게 됐다. 아이템 분류 문제를 기존 로지스틱 회귀로도 다시 해보고 이번 챕터에서 새로 배울 인공 신경망을 통해서도 분류를 한다음 성능을 비교해보자. 우선 데이터를 로딩하는데 패션 MNIST 데이터는 워낙 유명하기 때문에 딥러닝 라이브러리에서 이 데이터를 바로 로딩해서 쓸수 있다. 라이브러리는 텐서플로라는 아주 유명한 라이브러리를 사용했고 로딩한 데이터를 출력해보고 샘플의 타깃값 10개와 레이블당 샘플수까지 확인해봤다. 이 훈련 샘플은 60,000개나 되기 때문에 전체 데이터를 한꺼번에 사용하여 모델을 훈련하는 것보다 샘플을 하나씩 꺼내서 훈련하는 방법이 더 효율적으로 보인다. 확률적 경사 하강법이다. 훈련전에 2차원인 샘플들을 1차원으로 펼..