머신러닝의 지도학습을 계속 익히고 있는중이다. 앞의 학습과정을 정리하면 (과정이 점점 늘고있다 ㅡㅡ;;;) 1. 데이터 준비 및 데이터 패턴 파악하기 ( 주로 그래프들을 그려가며 대략적인 추세 파악 ) 2. 만약 스케일이 안맞는 데이터들이라면 스케일 맞추기 3. 훈련세트와 테스트세트 준비하기 4. 특정 알고리즘 (여기선 k-최근접 이웃 알고리즘 ) 으로 훈련하기 5. 과소적합, 과대적합 파악해서 파라미터 조정하기 6. 평가 7. 예측 및 사용하기 앞의 과정을 거친 모델을 사용중에 예측 할 데이터로 다시 예측을 해보는데 실데이터와 예측데이터와 큰 차이가 발생했다면? 그럼 모델 사용에 또 뭔가 수정할 부분이 생겼다는 말이다. 그걸 살펴보자. 1. 데이터 준비 및 패턴 파악하기 ( 주로 그래프들을 그려가며 대..