주성분 분석 차원과 차원 축소 지금까지 데이터가 가진 속성을 특성이라고 불렀는데 과일 사진의 경우 10,000개의 픽셀이 있기 때문에 10,000개의 특성이 있는 셈이다. 머신러닝에서는 이런 특성을 차원이라도 부른다. 나중에 보겠지만 이런 차원을 줄일 수 있다면 저장 공간을 크게 절약할 수 있을 것이고 차원 축소된 데이터를 지도 학습 알고리즘이나 다른 비지도 학습 알고리즘에 재사용하여 성능을 높이거나 훈련 속도를 빠르게 만들 수도 있다. 즉 이번 챕터에서 배울 내용을 미리 요약하면 그림의 10,000 개의 픽셀을 해당 이미지의 특성을 가진 몇십개의 픽셀 정보로 줄여서 그걸 가지고 다른 분야에 사용할수 있다는 것이다. 아무튼 작업을 하는 대표적인 알고리즘이 주성분 분석 (PCA)이 있다.줄여서 PCA라고도..